Alan Turing citations

Alan Turing foto
4  1

Alan Turing

Date de naissance: 23. juin 1912
Date de décès: 7. juin 1954
Autres noms:एलन ट्यूरिंग,Алан Матисон Тьюринг

Publicité

Alan Mathison Turing, né le 23 juin 1912 à Londres et mort le 7 juin 1954 à Wilmslow, est un mathématicien et cryptologue britannique, auteur de travaux qui fondent scientifiquement l'informatique.

Pour résoudre le problème fondamental de la décidabilité en arithmétique, il présente en 1936 une expérience de pensée que l'on nommera ensuite machine de Turing et des concepts de programmation et de programme, qui prendront tout leur sens avec la diffusion des ordinateurs, dans la seconde moitié du XXe siècle. Son modèle a contribué à établir définitivement la thèse de Church, qui donne une définition mathématique au concept intuitif de fonction calculable. Après la guerre, il travaille sur un des tout premiers ordinateurs, puis contribue au débat sur la possibilité de l'intelligence artificielle, en proposant le test de Turing. Vers la fin de sa courte vie, il s'intéresse à des modèles de morphogenèse du vivant conduisant aux « structures de Turing ».

Durant la Seconde Guerre mondiale, il joue un rôle majeur dans la cryptanalyse de la machine Enigma, utilisée par les armées allemandes. Ses méthodes permirent de casser ce code et, selon plusieurs historiens, de raccourcir la capacité de résistance du régime nazi de deux ans et épargner la vie de quatorze millions de personnes.

En 1952, un fait divers lié à son homosexualité lui vaut des poursuites judiciaires. Pour éviter la prison, il choisit la castration chimique par prise d'œstrogènes. Turing est retrouvé mort dans la chambre de sa maison à Manchester, par empoisonnement au cyanure, le 7 juin 1954. La reine Élisabeth II le gracie à titre posthume en 2013. Il n'a été reconnu comme héros de guerre que 55 ans après sa mort.

Citations Alan Turing

Publicité

„I am not very impressed with theological arguments whatever they may be used to support. Such arguments have often been found unsatisfactory in the past.“

— Alan Turing
Context: I am not very impressed with theological arguments whatever they may be used to support. Such arguments have often been found unsatisfactory in the past. In the time of Galileo it was argued that the texts, "And the sun stood still... and hasted not to go down about a whole day" (Joshua x. 13) and "He laid the foundations of the earth, that it should not move at any time" (Psalm cv. 5) were an adequate refutation of the Copernican theory. pp. 443-444.

Publicité

„The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many circumstances, but one too easily forgets that it is false.“

— Alan Turing
Context: The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many circumstances, but one too easily forgets that it is false. A natural consequence of doing so is that one then assumes that there is no virtue in the mere working out of consequences from data and general principles. p. 451.

„The majority of them seem to be "sub-critical," i.e., to correspond in this analogy to piles of sub-critical size. An idea presented to such a mind will on average give rise to less than one idea in reply. A smallish proportion are super-critical. An idea presented to such a mind may give rise to a whole "theory" consisting of secondary, tertiary and more remote ideas.“

— Alan Turing
Context: Another simile would be an atomic pile of less than critical size: an injected idea is to correspond to a neutron entering the pile from without. Each such neutron will cause a certain disturbance which eventually dies away. If, however, the size of the pile is sufficiently increased, the disturbance caused by such an incoming neutron will very likely go on and on increasing until the whole pile is destroyed. Is there a corresponding phenomenon for minds, and is there one for machines? There does seem to be one for the human mind. The majority of them seem to be "sub-critical," i. e., to correspond in this analogy to piles of sub-critical size. An idea presented to such a mind will on average give rise to less than one idea in reply. A smallish proportion are super-critical. An idea presented to such a mind may give rise to a whole "theory" consisting of secondary, tertiary and more remote ideas. Animals minds seem to be very definitely sub-critical. Adhering to this analogy we ask, "Can a machine be made to be super-critical?" p. 454.

„These questions replace our original, "Can machines think?"“

— Alan Turing
Context: "Can machines think?"... The new form of the problem can be described in terms of a game which we call the 'imitation game." It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart front the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either "X is A and Y is B" or "X is B and Y is A." The interrogator is allowed to put questions to A and B... We now ask the question, "What will happen when a machine takes the part of A in this game?" Will the interrogator decide wrongly as often when the game is played like this as he does when the game is played between a man and a woman? These questions replace our original, "Can machines think?"

„Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity.“

— Alan Turing
Context: Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity. The activity of the intuition consists in making spontaneous judgements which are not the result of conscious trains of reasoning... The exercise of ingenuity in mathematics consists in aiding the intuition through suitable arrangements of propositions, and perhaps geometrical figures or drawings. "Systems of Logic Based on Ordinals," section 11: The purpose of ordinal logics (1938), published in Proceedings of the London Mathematical Society, series 2, vol. 45 (1939) In a footnote to the first sentence, Turing added: "We are leaving out of account that most important faculty which distinguishes topics of interest from others; in fact, we are regarding the function of the mathematician as simply to determine the truth or falsity of propositions."

Publicité
Prochain
Anniversaires aujourd'hui
William Howitt foto
William Howitt
écrivain britannique 1792 - 1879
Surendranath Dasgupta foto
Surendranath Dasgupta
philosophe indien 1887 - 1952
Konrad Zuse foto
Konrad Zuse
1910 - 1995
Un autre 75 ans aujourd'hui
Auteurs similaires
Gerald James Whitrow foto
Gerald James Whitrow
mathématicien britannique
Harold Davenport foto
Harold Davenport
mathématicien russe
Samuel Vince foto
Samuel Vince
Mathématicien, astronome et physicien anglais
Auguste De Morgan foto
Auguste De Morgan
mathématicien britannique
Andrew Hodges1
mathématicien et physicien britannique
Alfred George Greenhill foto
Alfred George Greenhill
mathématicien britannique
Godfrey Harold Hardy foto
Godfrey Harold Hardy
mathématicien britannique
Andrew Wiles foto
Andrew Wiles
mathématicien anglais
James Jeans foto
James Jeans
physicien, astronome et mathématicien britannique
Paul Dirac foto
Paul Dirac
physicien théoricien britannique