Georg Cantor citations

Georg Cantor photo
3   2

Georg Cantor

Date de naissance: 3. mars 1845
Date de décès: 6. janvier 1918

Publicité

Georg Ferdinand Ludwig Philipp Cantor est un mathématicien allemand, connu pour être le créateur de la théorie des ensembles. Il établit l'importance de la bijection entre les ensembles, définit les ensembles infinis et les ensembles bien ordonnés. Il prouva également que les nombres réels sont « plus nombreux » que les entiers naturels. En fait, le théorème de Cantor implique l'existence d'une « infinité d'infinis ». Il définit les nombres cardinaux, les nombres ordinaux et leur arithmétique. Le travail de Cantor est d'un grand intérêt philosophique et a donné lieu à maintes interprétations et à maints débats.

Cantor a été confronté à la résistance de la part des mathématiciens de son époque, en particulier Kronecker. Poincaré, bien qu'il connût et appréciât les travaux de Cantor, avait de profondes réserves sur son maniement de l'infini en tant que totalité achevée. Les accès de dépressions récurrents du mathématicien, de 1884 à la fin de sa vie, ont été parfois attribués à l'attitude hostile de certains de ses contemporains, mais ces accès sont souvent à présent interprétés comme des manifestations d'un probable trouble bipolaire.

Au XXIe siècle, la valeur des travaux de Cantor n'est pas discutée par la majorité des mathématiciens qui y voient un changement de paradigme, à l'exception d'une partie du courant constructiviste qui s'inscrit à la suite de Kronecker. Dans le but de contrer les détracteurs de Cantor, David Hilbert a affirmé : « Nul ne doit nous exclure du Paradis que Cantor a créé ».

Auteurs similaires

Émile Picard photo
Émile Picard1
mathématicien français
Alan Turing photo
Alan Turing4
mathématicien britannique
Henri Poincaré photo
Henri Poincaré28
mathématicien, physicien, philosophe et ingénieur français
Hans Jonas4
philosophe allemand
Martin Heidegger photo
Martin Heidegger16
philosophe allemand
Erich Maria Remarque photo
Erich Maria Remarque6
écrivain allemand
Nicolas de Condorcet photo
Nicolas de Condorcet6
philosophe, mathématicien et homme politique français
Martin Luther photo
Martin Luther2
théologien allemand, père du protestantisme
Hannah Arendt photo
Hannah Arendt27
philosophe américaine d'origine allemande

Citations Georg Cantor

Publicité

„Mathematics is in its development entirely free and is only bound in the self-evident respect that its concepts must both be consistent with each other, and also stand in exact relationships, ordered by definitions, to those concepts which have previously been introduced and are already at hand and established.“

—  Georg Cantor
Context: Mathematics is in its development entirely free and is only bound in the self-evident respect that its concepts must both be consistent with each other, and also stand in exact relationships, ordered by definitions, to those concepts which have previously been introduced and are already at hand and established. In particular, in the introduction of new numbers, it is only obligated to give definitions of them which will bestow such a determinacy and, in certain circumstances, such a relationship to the other numbers that they can in any given instance be precisely distinguished. As soon as a number satisfies all these conditions, it can and must be regarded in mathematics as existent and real.

„My theory stands as firm as a rock; every arrow directed against it will return quickly to its archer.“

—  Georg Cantor
Context: My theory stands as firm as a rock; every arrow directed against it will return quickly to its archer. How do I know this? Because I have studied it from all sides for many years; because I have examined all objections which have ever been made against the infinite numbers; and above all because I have followed its roots, so to speak, to the first infallible cause of all created things. As quoted in Journey Through Genius (1990) by William Dunham

„The transfinite numbers are in a certain sense themselves new irrationalities“

—  Georg Cantor
Context: The transfinite numbers are in a certain sense themselves new irrationalities and in fact in my opinion the best method of defining the finite irrational numbers is wholly dissimilar to, and I might even say in principle the same as, my method described above of introducing transfinite numbers. One can say unconditionally: the transfinite numbers stand or fall with the finite irrational numbers; they are like each other in their innermost being; for the former like the latter are definite delimited forms or modifications of the actual infinite. As quoted in Understanding the Infinite (1994) by Shaughan Lavine

„The totality of all alephs cannot be conceived as a determinate, well-defined, and also a finished set.“

—  Georg Cantor
Context: The totality of all alephs cannot be conceived as a determinate, well-defined, and also a finished set. This is the punctum saliens, and I venture to say that this completely certain theorem, provable rigorously from the definition of the totality of all alephs, is the most important and noblest theorem of set theory. One must only understand the expression "finished" correctly. I say of a set that it can be thought of as finished (and call such a set, if it contains infinitely many elements, "transfinite" or "suprafinite") if it is possible without contradiction (as can be done with finite sets) to think of all its elements as existing together, and to think of the set itself as a compounded thing for itself; or (in other words) if it is possible to imagine the set as actually existing with the totality of its elements. Letter to David Hilbert (2 October 1897)

„I call this the improper infinite“

—  Georg Cantor
Context: As for the mathematical infinite, to the extent that it has found a justified application in science and contributed to its usefulness, it seems to me that it has hitherto appeared principally in the role of a variable quantity, which either grows beyond all bounds or diminishes to any desired minuteness, but always remains finite. I call this the improper infinite [das Uneigentlich-unendliche].

Publicité

„I have never proceeded from any Genus supremum of the actual infinite. Quite the contrary, I have rigorously proved that there is absolutely no Genus supremum of the actual infinite. What surpasses all that is finite and transfinite is no Genus; it is the single, completely individual unity in which everything is included, which includes the Absolute, incomprehensible to the human understanding. This is the Actus Purissimus, which by many is called God.“

—  Georg Cantor
Context: I have never proceeded from any Genus supremum of the actual infinite. Quite the contrary, I have rigorously proved that there is absolutely no Genus supremum of the actual infinite. What surpasses all that is finite and transfinite is no Genus; it is the single, completely individual unity in which everything is included, which includes the Absolute, incomprehensible to the human understanding. This is the Actus Purissimus, which by many is called God. I am so in favor of the actual infinite that instead of admitting that Nature abhors it, as is commonly said, I hold that Nature makes frequent use of it everywhere, in order to show more effectively the perfections of its Author. Thus I believe that there is no part of matter which is not — I do not say divisible — but actually divisible; and consequently the least particle ought to be considered as a world full of an infinity of different creatures. As quoted in Out of the Mouths of Mathematicians : A Quotation Book for Philomaths (1993) by Rosemary Schmalz.

„This view [of the infinite], which I consider to be the sole correct one, is held by only a few.“

—  Georg Cantor
Context: This view [of the infinite], which I consider to be the sole correct one, is held by only a few. While possibly I am the very first in history to take this position so explicitly, with all of its logical consequences, I know for sure that I shall not be the last! As quoted in Journey Through Genius (1990) by William Dunham ~

Publicité

„However, he was born in Copenhagen, of Jewish parents, of the Portuguese Jewish community there.“

—  Georg Cantor
Of his father. In a letter written by Georg Cantor to Paul Tannery in 1896 (Paul Tannery, Memoires Scientifique 13 Correspondance, Gauthier-Villars, Paris, 1934, p. 306)

„In mathematics the art of asking questions is more valuable than solving problems.“

—  Georg Cantor
Doctoral thesis (1867); variant translation: In mathematics the art of proposing a question must be held of higher value than solving it.

Prochain
Anniversaires aujourd'hui
Ernst Boris Chain photo
Ernst Boris Chain
chimiste allemand 1906 - 1979
Colin Jordan
politicien britannique 1923 - 2009
John Emerich Edward Dalberg-Acton photo
John Emerich Edward Dalberg-Acton
personnalité politique britannique 1834 - 1902
Charles Hodge photo
Charles Hodge
Théologien protestant américain 1797 - 1878
Un autre 81 ans aujourd'hui
Auteurs similaires
Émile Picard photo
Émile Picard1
mathématicien français
Alan Turing photo
Alan Turing4
mathématicien britannique
Henri Poincaré photo
Henri Poincaré28
mathématicien, physicien, philosophe et ingénieur français
Hans Jonas4
philosophe allemand
Martin Heidegger photo
Martin Heidegger16
philosophe allemand